Resolution Complexity of Perfect Matching Principles for Sparse Graphs

نویسندگان

  • Dmitry Itsykson
  • Mikhail Slabodkin
  • Dmitry Sokolov
چکیده

The resolution complexity of the perfect matching principle was studied by Razborov [Raz04], who developed a technique for proving its lower bounds for dense graphs. We construct a a constant degree bipartite graph Gn such that the resolution complexity of the perfect matching principle for Gn is 2 Ω(n), where n is the number of vertices inGn. This lower bound matches with the upper bound 2 O(n) up to an application of a polynomial. Our result implies the 2Ω(n) lower bounds for the complete graph Kn and the complete bipartite graph Kn,O(n) that improve the lower bounds followed from [Raz04]. Our results also implies the well-known exponential lower bounds on the resolution complexity of the pigeonhole principle, the functional pigeonhole principle and the pigeonhole principle over a graph. We also prove the following corollary. For every natural number d, for every n large enough, for every function h : {1, 2, . . . , n} → {1, 2, . . . , d}, we construct a graph with n vertices that has the following properties. There exists a constant D such that the degree of the i-th vertex is at least h(i) and at most D, and it is impossible to make all degrees equal to h(i) by removing the graph’s edges. Moreover, any proof of this statement in the resolution proof system has size 2Ω(n). This result implies well-known exponential lower bounds on the Tseitin formulas as well as new results: for example, the same property of a complete graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolution complexity of perfect mathcing principles for sparse graphs

The resolution complexity of the perfect matching principle was studied by Razborov [Raz04], who developed a technique for proving its lower bounds for dense graphs. We construct a a constant degree bipartite graph Gn such that the resolution complexity of the perfect matching principle for Gn is 2 Ω(n), where n is the number of vertices inGn. This lower bound matches with the upper bound 2 O(n...

متن کامل

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

Tight Lower Bounds on the Resolution Complexity of Perfect Matching Principles

The resolution complexity of the perfect matching principle was studied by Razborov [14], who developed a technique for proving its lower bounds for dense graphs. We construct a constant degree bipartite graph Gn such that the resolution complexity of the perfect matching principle for Gn is 2 where n is the number of vertices in Gn. This lower bound is tight up to some polynomial. Our result i...

متن کامل

On the Eccentric Connectivity Index of Unicyclic Graphs

In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.

متن کامل

On the computational complexity of finding a minimal basis for the guess and determine attack

Guess-and-determine attack is one of the general attacks on stream ciphers. It is a common cryptanalysis tool for evaluating security of stream ciphers. The effectiveness of this attack is based on the number of unknown bits which will be guessed by the attacker to break the cryptosystem. In this work, we present a relation between the minimum numbers of the guessed bits and uniquely restricted...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015